

Available online at www.sciencedirect.com

Tetrahedron Letters

Tetrahedron Letters 48 (2007) 685–687

An unusual norcaradiene/tropylium rearrangement from a persistent amino-phosphonio-carbene

Joan Vignolle,^{a,b} Bruno Donnadieu,^b Didier Bourissou^{a,*} and Guy Bertrand^{b,*}

^aLaboratoire Hétérochimie Fondamentale et Appliquée du CNRS (UMR 5069), Université Paul Sabatier, 118, route de Narbonne, 31062 Toulouse Cedex 9, France
^bUCR-CNRS Joint Research Chemistry Laboratory (UMI 2957), Department of Chemistry, University of California,

Riverside, CA 92521-0403, USA

Received 30 October 2006; accepted 15 November 2006 Available online 8 December 2006

Abstract—An amino-phosphonio-carbene featuring a bromobiphenyl backbone was prepared and spectroscopically characterized at low temperature. This carbene was found to readily rearrange upon warm up, affording an original tricyclic phospholium derivative, presumably via a norcaradiene/tropylium isomerization. © 2006 Elsevier Ltd. All rights reserved.

Due to their strong σ -donor character, N-heterocyclic carbenes (NHCs) have found numerous applications as alternative ligands to phosphines for transition-metal catalysts.[1](#page-1-0) Taking advantage of the substantial stabilization brought by a single heteroatom substituent (an amino or phosphino group), 2 the variety of available stable carbenes has been significantly increased over the last five years.[3](#page-2-0) Accordingly, the steric and electronic properties of amino-carbenes could be varied in a broader range, as nicely illustrated by the cyclic aminoalkyl-carbenes (CAACs).[4](#page-2-0)

The spectacular achievements reported with diphosphines featuring a diaryl backbone (especially BIPHEN and BINAP ligands) 5 prompted us to investigate related heteroditopic ligands combining amino-carbene and phosphine coordination sites. The synthesis of the representative biphenyl derivatives A (Scheme 1) was envisaged as a further application of the recently reported nucleophilic substitution at the carbene center of amino-phosphonio-carbenes.^{[6](#page-2-0)} Accordingly, dications **D** were considered as promising precursors for A via a deprotonation/metalation sequence involving intermediates B and C. Here we report the preparation and spectroscopic characterization at low temperature of an amino-phosphonio-carbene of type C. This compound was found to readily rearrange upon warm up, affording an original tricyclic derivative, presumably via a norcaradiene/tropylium isomerization.

The phosphonio-iminium salt 1 (dication of type D) was obtained by extrapolation of the procedure described for the tricyclohexyl and triphenylphosphines.[7](#page-2-0) Accordingly, the readily available 2-bromo-2'-diphenylphosphinobiphenyl 8 was treated with the C-chloroiminium chloride in the presence of 2 equiv of trimethylsilyl triflate in $CH₃CN$ [\(Scheme 2](#page-1-0)). Dication 1 was isolated in 82% yield as a pale yellow solid. The signals observed

Scheme 1. Proposed synthetic route to aminocarbene/phosphine derivatives A.

Keywords: Carbenes; Rearrangement; Norcaradiene; Tropylium.

^{*} Corresponding authors. Tel.: +33 5 61 55 77 37; fax: +33 5 61 55 82 04 (D.B.); tel.: +1 909 787 2720; fax: +1 909 787 2725 (G.B.); e-mail addresses: [dbouriss@chimie.ups-tlse.fr;](mailto:dbouriss@chimie.ups-tlse.fr) gbertran@mail.ucr.edu

^{0040-4039/\$ -} see front matter © 2006 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2006.11.099

Scheme 2. Synthesis and rearrangement of the amino-phosphonio-carbene 2.

at low-field in the $\mathrm{^{1}H}$ (9.66 ppm, $\mathrm{^{2}}$ at low-field in the ¹H (9.66 ppm, $^{2}J_{HP} = 23.7$ Hz) and ¹³C NMR spectra (169.5 ppm, $^{1}J_{CP} = 63.5$ Hz) are diag-nostic of the C–H iminium moiety of such dications.^{[9](#page-2-0)}

Deprotonation of dication 1 was achieved with sodium *t*-butoxide at -78 °C in THF.^{[10](#page-2-0)} Quite surprisingly, the ensuing carbene 2 could only be spectroscopically characterized at -40 °C. The shielding of the ^{31}P NMR signal by about 30 ppm upon deprotonation and the ¹³C NMR chemical shift for the carbene center (δ 291.4 ppm, $^{1}J_{CP} = 112.2$ Hz) unambiguously establish the amino-phosphonio-carbene structure of 2. [6](#page-2-0) Upon warming to room temperature, carbene 2 cleanly rearranges within minutes into a new compound 3, which was isolated as an orange solid.^{[11](#page-2-0)} The multi-nuclear data for 3 revealed interesting features: (i) the ^{31}P NMR chemical shift of 3 (23.0 ppm) is very similar to that of the dication 1, (ii) the ${}^{1}H$ and ${}^{13}C$ NMR signals for the CH(*i*Pr) groups (¹H: 4.57 and 4.66 ppm; ¹³C: 57.6 and 64.0 ppm) are in the typical range for an iminium, and (iii) the related ¹³C NMR signal for the $C=N^+$ moiety (166.8 ppm) is attributed to a quaternary center. Single crystals of 3 were grown from a CH_2Cl_2/Et_2O mixture at -30 °C and the X-ray diffraction study revealed a major reorganization of the carbene (Fig. 1). On the one hand, the amino-carbene, which is no longer bonded to the phosphorus atom, has apparently con-

Figure 1. Thermal ellipsoid diagram (50% probability) of 3, the hydrogen and counter-anions have been omitted for clarity.

Scheme 3. Postulated mechanism for the rearrangement of 2 into 3.

tributed to the conversion of one of the phenyl rings into a tropylium moiety. On the other hand, the phosphorus atom bridges the two aromatic rings, leading to a dicationic tricyclic structure.[12](#page-2-0)

Although the precise mechanism for the conversion of 2 into 3 remains rather obscure, the following hypothesis may be reasonably formulated (Scheme 3). First, nucleophilic attack of amino-carbene 2 on the biphenylbackbone would be favored by the electron-withdrawing phosphonio group. Second, the ensuing ylide 4 would attack back to the highly electron-deficient carbon center leading to the norcaradiene-type iminium 5. Third, ring enlargement^{[13](#page-2-0)} would convert $\hat{5}$ into the corresponding amino-tropylium salt 6. Last, the liberated phosphine would attack at the brominated ortho position to afford the tricyclic structure 3. [14](#page-2-0)

In conclusion, these results highlight the dramatic influence of the substitution pattern of amino-phosphonio-carbenes on their stability. The presence of a bromobiphenyl moiety induced an unusual rearrangement that presumably occurred via a norcaradiene/tropylium isomerization. Alternative routes to heteroditopic amino-carbene/phosphine ligands of type A are currently under investigation.

Acknowledgment

We are grateful to the NIH (R01 GM 68825) for financial support of this work.

Supplementary data

Supplementary data associated with this article can be found, in the online version, at [doi:10.1016/](http://dx.doi.org/10.1016/j.tetlet.2006.11.099) [j.tetlet.2006.11.099.](http://dx.doi.org/10.1016/j.tetlet.2006.11.099)

References and notes

1. (a) Arduengo, A. J., III. Acc. Chem. Res. 1999, 32, 913– 921; (b) Bourissou, D.; Guerret, O.; Gabbaï, F. P.; Bertrand, G. Chem. Rev. 2000, 100, 39–92; (c) Jafarpour,

L.; Nolan, S. P. Adv. Organomet. Chem. 2001, 46, 181– 222; (d) Herrmann, W. A. Angew. Chem., Int. Ed. 2002, 41, 1290–1309; (e) Perry, M. C.; Burgess, K. Tetrahedron: Asymmetry 2003, 14, 951–961; (f) Peris, E.; Crabtree, R. H. Coord. Chem. Rev. 2004, 248, 2239–2246; (g) Crudden, C. M.; Allen, D. P. Coord. Chem. Rev. 2004, 248, 2247– 2273; (h) César, V.; Bellemin-Laponnaz, S.; Gade, L. H. Chem. Soc. Rev. 2004, 33, 619–636; (i) Scott, N. M.; Nolan, S. P. Eur. J. Inorg. Chem. 2005, 1815–1828.

- 2. (a) Buron, C.; Gornitzka, H.; Romanenko, V.; Bertrand, G. Science 2000, 288, 834-836; (b) Solé, S.; Gornitzka, H.; Schoeller, W. W.; Bourissou, D.; Bertrand, G. Science 2001, 292, 1901–1903; (c) Despagnet, E.; Gornitzka, H.; Rozhenko, A. B.; Schoeller, W. W.; Bourissou, D.; Bertrand, G. Angew. Chem., Int. Ed. 2002, 41, 2835– 2837; (d) Despagnet-Ayoub, E.; Solé, S.; Gornitzka, H.; Rozhenko, A.; Schoeller, W. W.; Bourissou, D.; Bertrand, G. J. Am. Chem. Soc. 2003, 125, 124–130; (e) Cattoën, X.; Gornitzka, H.; Bourissou, D.; Bertrand, G. J. Am. Chem. Soc. 2004, 126, 1342-1343; (f) Lavallo, V.; Mafhouz, J.; Canac, Y.; Donnadieu, B.; Schoeller, W. W.; Bertrand, G. J. Am. Chem. Soc. 2004, 126, 8670–8671.
- 3. (a) Kirmse, W. Angew. Chem., Int. Ed. 2004, 43, 1767– 1769; (b) Canac, Y.; Soleilhavoup, M.; Conejero, S.; Bertrand, G. J. Organomet. Chem. 2004, 689, 3857–3865; (c) Hahn, F. E. Angew. Chem., Int. Ed. 2006, 45, 1348– 1352.
- 4. (a) Lavallo, V.; Canac, Y.; Prasang, C.; Donnadieu, B.; Bertrand, G. Angew. Chem., Int. Ed. 2005, 44, 5705–5709; (b) Lavallo, V.; Canac, Y.; DeHope, A.; Donnadieu, B.; Bertrand, G. Angew. Chem., Int. Ed. 2005, 44, 7236–7239.
- 5. (a) Noyori, R.; Takaya, H. Acc. Chem. Res. 1990, 23, 345– 350; (b) McCarthy, M.; Guiry, P. J. Tetrahedron 2001, 57, 3809–3844; (c) Berthod, M.; Mignani, G.; Woodward, G.; Lemaire, M. Chem. Rev. 2005, 105, 1801–1836.
- 6. (a) Merceron-Saffon, N.; Baceiredo, A.; Gornitzka, H.; Bertrand, G. Science 2003, 301, 1223–1225; (b) Conejero, S.; Canac, Y.; Tham, F. S.; Bertrand, G. Angew. Chem., Int. Ed. 2004, 43, 4089–4093; (c) Canac, Y.; Conejero, S.; Donnadieu, B.; Schoeller, W. W.; Bertrand, G. J. Am. Chem. Soc. 2005, 127, 7312–7313.
- 7. (a) Weiss, R.; May, R.; Pomrehn, B. Angew. Chem., Int. Ed. 1996, 35, 1232–1234; (b) Weiss, R.; Pomrehn, B.; Hampel, F.; Bauer, W. Angew. Chem., Int. Ed. Engl. 1995, 34, 1319–1321; (c) Weiss, R.; Salomon, N. J.; Miess, G. E.; Roth, R. Angew. Chem., Int. Ed. Engl. 1986, 25, 917– 919.
- 8. Brunner, H.; Janura, M. Synthesis 1998, 1, 45–55.
- 9. A 1.2/1 mixture of 2-bromo-2'-diphenylphosphinobiphenyl (1.20 g, 2.88 mmol) and C-chloroiminium chloride $(0.44 \text{ g}, 2.40 \text{ mmol})$ was cooled to -30 °C and 20 mL of $CH₃CN$ was added. After addition of Me₃SiOTf (0.87 mL, 4.80 mmol) at -30 °C, the mixture was warmed to room temperature and stirred for 2 h. All the volatiles were removed under vacuum and the resulting solid was washed with 3×20 mL of Et₂O yielding 1 as a pale yellow solid (1.6 g, 82%). Selected data: ³¹P NMR (CD₃CN): δ 19.4; ¹H

(CD₃CN): δ 0.82, 1.32, 1.63, 1.75 (d, ³J_{HH} = 6.3 Hz, 12H, CH₃), 4.21 (sept, ³J_{HH} = 6.3 Hz, 1H, CHCH₃), 4.79 (br, 1H, CHCH₃), 7.21–8.15 (m, 18H, CH_{aro}), 9.66 (d, ${}^{2}J_{HP} = 23.7$ Hz, 1H, CH=N); ¹³C{¹H} NMR (CD₃CN): δ 18.8, 19.3, 24.0, 24.3 (s, CH₃), 65.2 (d, ³J_{CP} = 5.2 Hz,
CHCH₃), 68.8 (d, ³J_{CP} = 5.6 Hz, CHCH₃), 169.5 (d, ¹J_{CP} = 63.5 Hz, CH=N) $^{1}J_{CP} = 63.5$ Hz, CH=N).

- 10. In a NMR tube, a 1/1 mixture of dication 1 (65 mg, 0.08 mmol) and t-BuONa (7.5 mg, 0.08 mmol) was cooled to -78 °C and 0.7 mL of THF was added. The tube was shaken until complete dissolution, warmed up to -40° C, and analyzed directly by NMR. Selected data for 3: ³¹P NMR (THF): δ -13.8; ¹³C{¹H} NMR (THF): δ 19.4 (s, CH₃), 58.6 (d, ³J_{CP} = 27.6 Hz, CHCH₃), 72.8 (d, ³J_{CP} = 26.4 Hz, CHCH₃), 291.4 (d, ¹J_{CP} = 112.2 Hz, $C_{\rm carbene}$).
- 11. A 1/1 mixture of dication 1 (500 mg, 0.60 mmol) and *t*-BuONa (58 mg, 0.60 mmol) was cooled to -78 °C and 10 mL of THF was added. The solution was warmed to room temperature and stirred for 2 h. All the volatiles were removed under vacuum and the resulting solid was washed with 20 mL of Et₂O. After extraction with CH_2Cl_2 and evaporation of the solvent, the solid was washed with 10 mL of THF. Recrystallization from CH_2Cl_2/Et_2O yielded 3 as orange crystals (43% yield). Selected data: ³¹P NMR (CD₃CN): δ 23.0; ¹H NMR (CD₃CN): δ 1.11 and 1.48 (d, ${}^{3}J_{\text{HH}} = 6.3 \text{ Hz}$, 6H, CH₃), 1.51 and 1.88 (d, ${}^{3}J_{\text{HH}} = 6.9 \text{ Hz}$, 6H, CH₃), 4.57 (sept, ${}^{3}J_{\text{HH}} = 6.3 \text{ Hz}$, 1H, CHCH₃), 4.66 (sept, ${}^{3}J_{\text{HH}} = 6.9 \text{ Hz}$, 1H, CHCH₃), 7.46–8.29 17.5, 21.4, 21.7 and 22.3 (s, CH3), 57.6 and 64.0 (s, CHCH₃), 166.8 (d, $J_{CP} = 25.4$ Hz, C=N). Crystallographic data (excluding structure factors) for 3 have been deposited with the Cambridge Crystallographic Data Centre as Supplementary Number CCDC-625764. Copies of the data can be obtained, free of charge, on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (Fax: $+44(0)$ 1223 336033 or e-mail: deposit@ccdc. cam.ac.uk).
- 12. A few phospholium derivatives have been reported. See for example: (a) Pietrusiewicz, K. M.; Kuźnikowski, M. Phosphorus, Sulfur Silicon 1993, 77, 57–60; (b) Deschamps, B.; Toullec, P.; Ricard, L.; Mathey, F. J. Organomet. Chem. 2001, 634, 131–135; (c) Adkine, P.; Cantat, T.; Deschamps, E.; Ricard, L.; Mézailles, N.; Le Floch, P.; Geoffroy, M. Phys. Chem. Chem. Phys. 2006, 8, 862–868.
- 13. For selected references on norcaradiene/cycloheptatriene interconversion, see: (a) Maier, G. Angew. Chem., Int. Ed. Engl. 1967, 6, 402–413; (b) Vogel, E.; Günther, H. Angew. Chem., Int. Ed. Engl. 1967, 6, 385–401; (c) Banwell, M. G.; Gravatt, G. L.; Rickard, C. E. F. J. Chem. Soc., Chem. Commun. 1985, 514–515.
- 14. A related intramolecular nucleophilic addition of a phosphine to a cycloheptatriene has recently been reported: Tamm, M.; Baum, K.; Lügger, T.; Fröhlich, R.; Bergander, K. Eur. J. Inorg. Chem. 2002, 918–928.