

Available online at www.sciencedirect.com



Tetrahedron Letters

Tetrahedron Letters 48 (2007) 685-687

## An unusual norcaradiene/tropylium rearrangement from a persistent amino-phosphonio-carbene

Joan Vignolle,<sup>a,b</sup> Bruno Donnadieu,<sup>b</sup> Didier Bourissou<sup>a,\*</sup> and Guy Bertrand<sup>b,\*</sup>

<sup>a</sup>Laboratoire Hétérochimie Fondamentale et Appliquée du CNRS (UMR 5069), Université Paul Sabatier, 118, route de Narbonne, 31062 Toulouse Cedex 9, France <sup>b</sup>UCR-CNRS Joint Research Chemistry Laboratory (UMI 2957), Department of Chemistry, University of California,

Riverside, CA 92521-0403, USA

Received 30 October 2006; accepted 15 November 2006 Available online 8 December 2006

Abstract—An amino-phosphonio-carbene featuring a bromobiphenyl backbone was prepared and spectroscopically characterized at low temperature. This carbene was found to readily rearrange upon warm up, affording an original tricyclic phospholium derivative, presumably via a norcaradiene/tropylium isomerization. © 2006 Elsevier Ltd. All rights reserved.

Due to their strong  $\sigma$ -donor character, N-heterocyclic carbenes (NHCs) have found numerous applications as alternative ligands to phosphines for transition-metal catalysts.<sup>1</sup> Taking advantage of the substantial stabilization brought by a single heteroatom substituent (an amino or phosphino group),<sup>2</sup> the variety of available stable carbenes has been significantly increased over the last five years.<sup>3</sup> Accordingly, the steric and electronic properties of amino-carbenes could be varied in a broader range, as nicely illustrated by the cyclic amino-alkyl-carbenes (CAACs).<sup>4</sup>

The spectacular achievements reported with diphosphines featuring a diaryl backbone (especially BIPHEN and BINAP ligands)<sup>5</sup> prompted us to investigate related heteroditopic ligands combining amino-carbene and phosphine coordination sites. The synthesis of the representative biphenyl derivatives **A** (Scheme 1) was envisaged as a further application of the recently reported

nucleophilic substitution at the carbene center of amino-phosphonio-carbenes.<sup>6</sup> Accordingly, dications **D** were considered as promising precursors for **A** via a deprotonation/metalation sequence involving intermediates **B** and **C**. Here we report the preparation and spectroscopic characterization at low temperature of an amino-phosphonio-carbene of type **C**. This compound was found to readily rearrange upon warm up, affording an original tricyclic derivative, presumably via a norcaradiene/tropylium isomerization.

The phosphonio-iminium salt 1 (dication of type **D**) was obtained by extrapolation of the procedure described for the tricyclohexyl and triphenylphosphines.<sup>7</sup> Accordingly, the readily available 2-bromo-2'-diphenylphosphinobiphenyl<sup>8</sup> was treated with the *C*-chloroiminium chloride in the presence of 2 equiv of trimethylsilyl triflate in CH<sub>3</sub>CN (Scheme 2). Dication 1 was isolated in 82% yield as a pale yellow solid. The signals observed



Scheme 1. Proposed synthetic route to aminocarbene/phosphine derivatives A.

Keywords: Carbenes; Rearrangement; Norcaradiene; Tropylium.

<sup>\*</sup> Corresponding authors. Tel.: +33 5 61 55 77 37; fax: +33 5 61 55 82 04 (D.B.); tel.: +1 909 787 2720; fax: +1 909 787 2725 (G.B.); e-mail addresses: dbouriss@chimie.ups-tlse.fr; gbertran@mail.ucr.edu

<sup>0040-4039/\$ -</sup> see front matter @ 2006 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2006.11.099



Scheme 2. Synthesis and rearrangement of the amino-phosphonio-carbene 2.

at low-field in the <sup>1</sup>H (9.66 ppm, <sup>2</sup> $J_{HP} = 23.7$  Hz) and <sup>13</sup>C NMR spectra (169.5 ppm, <sup>1</sup> $J_{CP} = 63.5$  Hz) are diagnostic of the C–H iminium moiety of such dications.<sup>9</sup>

Deprotonation of dication 1 was achieved with sodium *t*-butoxide at -78 °C in THF.<sup>10</sup> Quite surprisingly, the ensuing carbene 2 could only be spectroscopically characterized at -40 °C. The shielding of the <sup>31</sup>P NMR signal by about 30 ppm upon deprotonation and the <sup>13</sup>C NMR chemical shift for the carbene center ( $\delta$  291.4 ppm, <sup>1</sup> $J_{CP} = 112.2$  Hz) unambiguously establish the amino-phosphonio-carbene structure of 2.6 Upon warming to room temperature, carbene 2 cleanly rearranges within minutes into a new compound 3, which was isolated as an orange solid.<sup>11</sup> The multi-nuclear data for 3 revealed interesting features: (i) the  ${}^{31}P$  NMR chemical shift of 3 (23.0 ppm) is very similar to that of the dication 1, (ii) the <sup>1</sup>H and <sup>13</sup>C NMR signals for the CH(*i*Pr) groups (<sup>1</sup>H: 4.57 and 4.66 ppm;  $^{13}$ C: 57.6 and 64.0 ppm) are in the typical range for an iminium, and (iii) the related <sup>13</sup>C NMR signal for the C=N<sup>+</sup> moiety (166.8 ppm) is attributed to a quaternary center. Single crystals of 3 were grown from a CH<sub>2</sub>Cl<sub>2</sub>/Et<sub>2</sub>O mixture at -30 °C and the X-ray diffraction study revealed a major reorganization of the carbene (Fig. 1). On the one hand, the amino-carbene, which is no longer bonded to the phosphorus atom, has apparently con-



**Figure 1.** Thermal ellipsoid diagram (50% probability) of **3**, the hydrogen and counter-anions have been omitted for clarity.



Scheme 3. Postulated mechanism for the rearrangement of 2 into 3.

tributed to the conversion of one of the phenyl rings into a tropylium moiety. On the other hand, the phosphorus atom bridges the two aromatic rings, leading to a dicationic tricyclic structure.<sup>12</sup>

Although the precise mechanism for the conversion of 2 into 3 remains rather obscure, the following hypothesis may be reasonably formulated (Scheme 3). First, nucleophilic attack of amino-carbene 2 on the biphenylbackbone would be favored by the electron-withdrawing phosphonio group. Second, the ensuing ylide 4 would attack back to the highly electron-deficient carbon center leading to the norcaradiene-type iminium 5. Third, ring enlargement<sup>13</sup> would convert 5 into the corresponding amino-tropylium salt 6. Last, the liberated phosphine would attack at the brominated *ortho* position to afford the tricyclic structure 3.<sup>14</sup>

In conclusion, these results highlight the dramatic influence of the substitution pattern of amino-phosphonio-carbenes on their stability. The presence of a bromobiphenyl moiety induced an unusual rearrangement that presumably occurred via a norcaradiene/tropylium isomerization. Alternative routes to heteroditopic amino-carbene/phosphine ligands of type **A** are currently under investigation.

## Acknowledgment

We are grateful to the NIH (R01 GM 68825) for financial support of this work.

## Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.tetlet.2006.11.099.

## **References and notes**

 (a) Arduengo, A. J., III. Acc. Chem. Res. 1999, 32, 913– 921; (b) Bourissou, D.; Guerret, O.; Gabbaï, F. P.; Bertrand, G. Chem. Rev. 2000, 100, 39–92; (c) Jafarpour,



L.; Nolan, S. P. Adv. Organomet. Chem. 2001, 46, 181–222; (d) Herrmann, W. A. Angew. Chem., Int. Ed. 2002, 41, 1290–1309; (e) Perry, M. C.; Burgess, K. Tetrahedron: Asymmetry 2003, 14, 951–961; (f) Peris, E.; Crabtree, R. H. Coord. Chem. Rev. 2004, 248, 2239–2246; (g) Crudden, C. M.; Allen, D. P. Coord. Chem. Rev. 2004, 248, 2247–2273; (h) César, V.; Bellemin-Laponnaz, S.; Gade, L. H. Chem. Soc. Rev. 2004, 33, 619–636; (i) Scott, N. M.; Nolan, S. P. Eur. J. Inorg. Chem. 2005, 1815–1828.

- (a) Buron, C.; Gornitzka, H.; Romanenko, V.; Bertrand, G. Science 2000, 288, 834–836; (b) Solé, S.; Gornitzka, H.; Schoeller, W. W.; Bourissou, D.; Bertrand, G. Science 2001, 292, 1901–1903; (c) Despagnet, E.; Gornitzka, H.; Rozhenko, A. B.; Schoeller, W. W.; Bourissou, D.; Bertrand, G. Angew. Chem., Int. Ed. 2002, 41, 2835– 2837; (d) Despagnet-Ayoub, E.; Solé, S.; Gornitzka, H.; Rozhenko, A.; Schoeller, W. W.; Bourissou, D.; Bertrand, G. J. Am. Chem. Soc. 2003, 125, 124–130; (e) Cattoën, X.; Gornitzka, H.; Bourissou, D.; Bertrand, G. J. Am. Chem. Soc. 2004, 126, 1342–1343; (f) Lavallo, V.; Mafhouz, J.; Canac, Y.; Donnadieu, B.; Schoeller, W. W.; Bertrand, G. J. Am. Chem. Soc. 2004, 126, 8670–8671.
- (a) Kirmse, W. Angew. Chem., Int. Ed. 2004, 43, 1767– 1769; (b) Canac, Y.; Soleilhavoup, M.; Conejero, S.; Bertrand, G. J. Organomet. Chem. 2004, 689, 3857–3865; (c) Hahn, F. E. Angew. Chem., Int. Ed. 2006, 45, 1348– 1352.
- (a) Lavallo, V.; Canac, Y.; Prasang, C.; Donnadieu, B.; Bertrand, G. Angew. Chem., Int. Ed. 2005, 44, 5705–5709;
  (b) Lavallo, V.; Canac, Y.; DeHope, A.; Donnadieu, B.; Bertrand, G. Angew. Chem., Int. Ed. 2005, 44, 7236–7239.
- (a) Noyori, R.; Takaya, H. Acc. Chem. Res. 1990, 23, 345– 350; (b) McCarthy, M.; Guiry, P. J. Tetrahedron 2001, 57, 3809–3844; (c) Berthod, M.; Mignani, G.; Woodward, G.; Lemaire, M. Chem. Rev. 2005, 105, 1801–1836.
- (a) Merceron-Saffon, N.; Baceiredo, A.; Gornitzka, H.; Bertrand, G. Science 2003, 301, 1223–1225; (b) Conejero, S.; Canac, Y.; Tham, F. S.; Bertrand, G. Angew. Chem., Int. Ed. 2004, 43, 4089–4093; (c) Canac, Y.; Conejero, S.; Donnadieu, B.; Schoeller, W. W.; Bertrand, G. J. Am. Chem. Soc. 2005, 127, 7312–7313.
- (a) Weiss, R.; May, R.; Pomrehn, B. Angew. Chem., Int. Ed. 1996, 35, 1232–1234; (b) Weiss, R.; Pomrehn, B.; Hampel, F.; Bauer, W. Angew. Chem., Int. Ed. Engl. 1995, 34, 1319–1321; (c) Weiss, R.; Salomon, N. J.; Miess, G. E.; Roth, R. Angew. Chem., Int. Ed. Engl. 1986, 25, 917– 919.
- 8. Brunner, H.; Janura, M. Synthesis 1998, 1, 45-55.
- 9. A 1.2/1 mixture of 2-bromo-2'-diphenylphosphinobiphenyl (1.20 g, 2.88 mmol) and C-chloroiminium chloride (0.44 g, 2.40 mmol) was cooled to -30 °C and 20 mL of CH<sub>3</sub>CN was added. After addition of Me<sub>3</sub>SiOTf (0.87 mL, 4.80 mmol) at -30 °C, the mixture was warmed to room temperature and stirred for 2 h. All the volatiles were removed under vacuum and the resulting solid was washed with 3 × 20 mL of Et<sub>2</sub>O yielding **1** as a pale yellow solid (1.6 g, 82%). Selected data: <sup>31</sup>P NMR (CD<sub>3</sub>CN):  $\delta$  19.4; <sup>1</sup>H

 $\begin{array}{l} ({\rm CD}_{3}{\rm CN}): \delta \; 0.82, \; 1.32, \; 1.63, \; 1.75 \; ({\rm d}, \; {}^{3}J_{\rm HH} = 6.3 \; {\rm Hz}, \; 12{\rm H}, \\ {\rm CH}_{3}), \; 4.21 \; ({\rm sept}, \; {}^{3}J_{\rm HH} = 6.3 \; {\rm Hz}, \; 1{\rm H}, \; {\rm CHCH}_{3}), \; 4.79 \; ({\rm br}, \\ 1{\rm H}, \; {\rm CHCH}_{3}), \; 7.21{\rm -}8.15 \; ({\rm m}, \; 18{\rm H}, \; {\rm CH}_{\rm aro}), \; 9.66 \; ({\rm d}, \\ {}^{2}J_{\rm HP} = 23.7 \; {\rm Hz}, \; 1{\rm H}, \; {\rm CH=N}); \; {}^{13}{\rm C}\{^{1}{\rm H}\} \; {\rm NMR} \; ({\rm CD}_{3}{\rm CN}): \\ \delta \; 18.8, \; 19.3, \; 24.0, \; 24.3 \; ({\rm s}, \; {\rm CH}_{3}), \; 65.2 \; ({\rm d}, \; {}^{3}J_{\rm CP} = 5.2 \; {\rm Hz}, \\ {\rm CHCH}_{3}), \; 68.8 \; ({\rm d}, \; {}^{3}J_{\rm CP} = 5.6 \; {\rm Hz}, \; {\rm CHCH}_{3}), \; 169.5 \; ({\rm d}, \\ {}^{1}J_{\rm CP} = 63.5 \; {\rm Hz}, \; {\rm CH=N}). \end{array}$ 

- 10. In a NMR tube, a 1/1 mixture of dication 1 (65 mg, 0.08 mmol) and *t*-BuONa (7.5 mg, 0.08 mmol) was cooled to  $-78 \,^{\circ}$ C and 0.7 mL of THF was added. The tube was shaken until complete dissolution, warmed up to  $-40 \,^{\circ}$ C, and analyzed directly by NMR. Selected data for 3: <sup>31</sup>P NMR (THF):  $\delta -13.8$ ; <sup>13</sup>C{<sup>1</sup>H} NMR (THF):  $\delta 19.4$  (s, CH<sub>3</sub>), 58.6 (d, <sup>3</sup>J<sub>CP</sub> = 27.6 Hz, CHCH<sub>3</sub>), 72.8 (d, <sup>3</sup>J<sub>CP</sub> = 26.4 Hz, CHCH<sub>3</sub>), 291.4 (d, <sup>1</sup>J<sub>CP</sub> = 112.2 Hz, C<sub>carbene</sub>).
- 11. A 1/1 mixture of dication 1 (500 mg, 0.60 mmol) and t-BuONa (58 mg, 0.60 mmol) was cooled to -78 °C and 10 mL of THF was added. The solution was warmed to room temperature and stirred for 2 h. All the volatiles were removed under vacuum and the resulting solid was washed with 20 mL of Et<sub>2</sub>O. After extraction with CH<sub>2</sub>Cl<sub>2</sub> and evaporation of the solvent, the solid was washed with 10 mL of THF. Recrystallization from CH<sub>2</sub>Cl<sub>2</sub>/Et<sub>2</sub>O yielded 3 as orange crystals (43% yield). Selected yielded **3** as orange crystars (45%) yield). Selected data: <sup>31</sup>P NMR (CD<sub>3</sub>CN): δ 23.0; <sup>1</sup>H NMR (CD<sub>3</sub>CN): δ 1.11 and 1.48 (d, <sup>3</sup>J<sub>HH</sub> = 6.3 Hz, 6H, CH<sub>3</sub>), 1.51 and 1.88 (d, <sup>3</sup>J<sub>HH</sub> = 6.9 Hz, 6H, CH<sub>3</sub>), 4.57 (sept, <sup>3</sup>J<sub>HH</sub> = 6.3 Hz, 1H, CHCH<sub>3</sub>), 4.66 (sept, <sup>3</sup>J<sub>HH</sub> = 6.9 Hz, 1H, CHCH<sub>3</sub>), 7.46–8.29 (m, 18H, CH<sub>aro</sub>); <sup>13</sup>C NMR {<sup>1</sup>H} (CD<sub>3</sub>CN): δ 37.576 and 640 (sept, 37.576 and 57.576 and 17.5, 21.4, 21.7 and 22.3 (s, CH<sub>3</sub>), 57.6 and 64.0 (s, CHCH<sub>3</sub>), 166.8 (d,  $J_{CP} = 25.4$  Hz, C=N). Crystallographic data (excluding structure factors) for 3 have been deposited with the Cambridge Crystallographic Data Centre as Supplementary Number CCDC-625764. Copies of the data can be obtained, free of charge, on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (Fax: +44(0) 1223 336033 or e-mail: deposit@ccdc. cam.ac.uk).
- A few phospholium derivatives have been reported. See for example: (a) Pietrusiewicz, K. M.; Kuźnikowski, M. *Phosphorus, Sulfur Silicon* 1993, 77, 57–60; (b) Deschamps, B.; Toullec, P.; Ricard, L.; Mathey, F. J. *Organomet. Chem.* 2001, 634, 131–135; (c) Adkine, P.; Cantat, T.; Deschamps, E.; Ricard, L.; Mézailles, N.; Le Floch, P.; Geoffroy, M. *Phys. Chem. Chem. Phys.* 2006, 8, 862–868.
- For selected references on norcaradiene/cycloheptatriene interconversion, see: (a) Maier, G. Angew. Chem., Int. Ed. Engl. 1967, 6, 402–413; (b) Vogel, E.; Günther, H. Angew. Chem., Int. Ed. Engl. 1967, 6, 385–401; (c) Banwell, M. G.; Gravatt, G. L.; Rickard, C. E. F. J. Chem. Soc., Chem. Commun. 1985, 514–515.
- A related intramolecular nucleophilic addition of a phosphine to a cycloheptatriene has recently been reported: Tamm, M.; Baum, K.; Lügger, T.; Fröhlich, R.; Bergander, K. *Eur. J. Inorg. Chem.* 2002, 918–928.